
Section 11.1:

Sequences



Def:  

Version 1

A sequence is an infinite list of numbers with a definite order.

Version 2

A sequence is a function whose domain is the positive whole 

numbers.

What is a Sequence?

Ex 1:    1 ,  
1

2
 ,  

1

4
 ,  

1

8
 ,  

1

16
 ,  

1

32
 , …



There are 3 ways to describe a sequence

1. With a list of the first few terms

Note:  The list should be long enough so that the pattern is 

obvious.

What is a Sequence?

Ex 1 (again):    1 ,  
1

2
 ,  

1

4
 ,  

1

8
 ,  

1

16
 ,  

1

32
 , …

Ex 2:    
1

3
 ,  -

4

9
 ,  

9

27
 ,  -

16

81
 ,  

25

243
 , …



There are 3 ways to describe a sequence

2. With a closed form formula

What is a Sequence?

Ex 3: Find the first 4 terms of each of the following sequences. 

Then find the 29th term and graph the sequence.

a)  𝑎𝑛 = −1 𝑛 𝑛

𝑛+1



There are 3 ways to describe a sequence

2. With a closed form formula

What is a Sequence?

Ex 3: Find the first 4 terms of each of the following sequences. 

Then find the 29th term and graph the sequence.

b)  𝑏𝑛 =
𝑛−2

𝑛!
   ,    𝑛 ≥ 2



There are 3 ways to describe a sequence

3. With a recursively definition

What is a Sequence?

Ex 4: Find the first 6 terms of the following sequence… 

a)  𝑎1 = 5 ,  𝑎2 = −2 ,  and   𝑎𝑛 = 𝑎𝑛−1𝑎𝑛−2 − 3𝑎𝑛−1   

for   𝑛 > 2



Def:  If  𝑎𝑛  is a sequence, then

Limits of Sequences

Version 2

If you plug in bigger and bigger whole numbers in for n into 

the formula for the sequence, the outputs settle down to the 

number  L.

Version 1

If you go further and further to the right down the sequence 

list (or down the graph), the numbers in the sequence settle 

down to  L.  

lim
𝑛→∞

𝑎𝑛 = 𝐿    means…



Def:  If  𝑎𝑛  is a sequence and  L  is a real number, then

Limits of Sequences

lim
𝑛→∞

𝑎𝑛 = 𝐿    means…

If such a real number exists, we say that the sequence  𝑎𝑛  is a 

convergent sequence. Otherwise it is a divergent sequence.



Def (formal):  If  𝑎𝑛  is a sequence and  L  is a real number, 

then

Limits of Sequences

lim
𝑛→∞

𝑎𝑛 = 𝐿    means…

For every  𝜖 > 0 ,  there exists a number  𝑁  such that

𝐿 − 𝜖 < 𝑎𝑛 < 𝐿 + 𝜖  for all  𝑛 ≥ 𝑁.



Def (formal):  If  𝑎𝑛  is a sequence and  L  is a real number, 

then

Limits of Sequences

lim
𝑛→∞

𝑎𝑛 = 𝐿    means…

For every  𝜖 > 0 ,  there exists a number  𝑁  such that

𝐿 − 𝜖 < 𝑎𝑛 < 𝐿 + 𝜖  for all  𝑛 ≥ 𝑁.

Ex 5:  Is the sequence  

{1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, …}

a convergent or divergent sequence? 



Results That Help You Find Limits Of Sequences

Ex 6:  Find

lim
𝑛→∞

 (−1)𝑛
a)  lim

𝑛→∞
 𝑠𝑖𝑛

𝑛𝜋

2
 b)  

Some divergent sequences



Results That Help You Find Limits Of Sequences

If               , then lim
𝑥→∞

1

𝑥𝑟
= 0 𝑟 > 0

From Section 2.6, we had…

So… 



Results That Help You Find Limits Of Sequences

Ex 7:  Find

lim
𝑛→∞

 
1

𝑛2
 =  0a)  lim

𝑛→∞
 

1

𝑛
 = lim

𝑛→∞

1

𝑛1/2
= 0 b)  



Results That Help You Find Limits Of Sequences

Ex 8:  Find

lim
𝑛→∞

 
1

ln(𝑛)
 =  0a)  lim

𝑛→∞
 

1

2𝑛
 =  0b)  



Results That Help You Find Limits Of Sequences

Ex 9:  Find

lim
𝑛→∞

 
1

𝑛 + ln(𝑛)
 a)  lim

𝑛→∞
 

𝑛!

𝑛𝑛
 b)  



Results That Help You Find Limits Of Sequences

Ex 10:  Find

lim
𝑛→∞

 
−1 𝑛

𝑛
 a)  lim

𝑛→∞
 
sin(𝑛)

𝑛
 b)  



Results That Help You Find Limits Of Sequences



Results That Help You Find Limits Of Sequences

Ex 11:  Find

lim
𝑛→∞

 
12𝑛2

𝑛2 − 5𝑛 + 1
+ 𝑡𝑎𝑛−1(𝑛) a)  lim

𝑛→∞
 

𝑛

4𝑛2 + 1
 b)  



Results That Help You Find Limits Of Sequences

In conjunction with L’Hospital’s Rule



Sec. 4.4: Indeterminate Forms and L’Hospital’s Rule

L’Hospital’s Rule

Suppose you are taking the limit of a fraction

 

lim
𝑥→𝑎

𝑓(𝑥)

𝑔 𝑥 .

If this limit is of the type  
0

0
  or type  

±∞

±∞
  ,  then

lim
𝑥→𝑎

𝑓(𝑥)

𝑔 𝑥
 =  lim

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)



Sec. 4.4: Indeterminate Forms and L’Hospital’s Rule

Other Indeterminate Forms

0

0

±∞

±∞
          0 ∙ ∞          ∞ − ∞          

00          ∞0          1∞

Notes

1. If the limit is of any form other than  
0

0
  or  

±∞

±∞
 ,  use 

algebra to turn the limit into the form  
0

0
  or  

±∞

±∞
 .

2. Algebra includes reciprocals, conjugates, and logs.



Results That Help You Find Limits Of Sequences

Ex 12:  Find

lim
𝑛→∞

 
ln(𝑛)

ln(2𝑛)
 a)  lim

𝑛→∞
 𝑛2𝑒−𝑛  b)  

In conjunction with L’Hospital’s Rule



Results That Help You Find Limits Of Sequences

Ex 13:  Find

lim
𝑛→∞

 𝑠𝑖𝑛 𝜋/𝑛  a)  lim
𝑛→∞

 𝑙𝑛 2𝑛2 + 1 − 𝑙𝑛 𝑛2 + 1  b)  



Results That Help You Find Limits Of Sequences



Results That Help You Find Limits Of Sequences

Also, 

     if  𝑟 > 1 ,  then

     if  𝑟 ≤ −1 ,  then

lim
𝑛→∞

𝑟𝑛 = ∞

lim
𝑛→∞

𝑟𝑛 = 𝐷𝑁𝐸

Ex 14:  Find  

a) lim
𝑛→∞

4𝑛 = ∞ b) lim
𝑛→∞

1

3

𝑛

= 0



Results That Help You Find Limits Of Sequences

Also, 

     if  𝑟 > 1 ,  then

     if  𝑟 ≤ −1 ,  then

lim
𝑛→∞

𝑟𝑛 = ∞

lim
𝑛→∞

𝑟𝑛 = 𝐷𝑁𝐸

Ex 14:  Find  

d) lim
𝑛→∞

(−4)𝑛= 𝐷𝑁𝐸c) lim
𝑛→∞

−
1

2

𝑛

= 0



Results That Help You Find Limits Of Sequences

Also, 

     if  𝑟 > 1 ,  then

     if  𝑟 ≤ −1 ,  then

lim
𝑛→∞

𝑟𝑛 = ∞

lim
𝑛→∞

𝑟𝑛 = 𝐷𝑁𝐸

Ex 14:  Find  

f) lim
𝑛→∞

(1)𝑛= 1e) lim
𝑛→∞

−1 𝑛 = 𝐷𝑁𝐸



Results That Help You Find Limits Of Sequences

Ex 15:  Find

lim
𝑛→∞

 5𝑛8−𝑛+2 a)  lim
𝑛→∞

 
1

2𝑛
 b)  



Def (formal):  If  𝑎𝑛  is a sequence, then

Limits of Sequences

lim
𝑛→∞

𝑎𝑛 = ∞    means…

For every  𝑀 > 0 ,  there exists a number  𝑁  such that

𝑎𝑛 > 𝑀  for all  𝑛 ≥ 𝑁.

I.e. no matter what horizontal line  𝑦 = 𝑀  you draw, 

eventually each term of the sequence is above that horizontal 

line. 

Note:  If                          ,  the sequence is divergent. lim
𝑛→∞

𝑎𝑛 = ∞



Def (formal):  If  𝑎𝑛  is a sequence, then

Limits of Sequences

lim
𝑛→∞

𝑎𝑛 = −∞    means…

For every  𝑀 < 0 ,  there exists a number  𝑁  such that

𝑎𝑛 < 𝑀  for all  𝑛 ≥ 𝑁.

I.e. no matter what horizontal line  𝑦 = 𝑀  you draw, 

eventually each term of the sequence is below that horizontal 

line. 

Note:  If                            ,  the sequence is divergent. lim
𝑛→∞

𝑎𝑛 = −∞



Results That Help You Find Limits Of Sequences



Results That Help You Find Limits Of Sequences

Note:  The limit laws can still be used in the case when one or 

more limits is  ±∞  as long as the resulting calculation is an 

allowed calculation with infinities.

OK   NOT OK   

∞ + ∞ = ∞ ∞ − ∞ = ?

∞ + # = ∞ 0 ∙ ∞ =?

Other Indeterminate Forms

0

0

±∞

±∞
          0 ∙ ∞          ∞ − ∞          

00          ∞0          1∞



Results That Help You Find Limits Of Sequences



Results That Help You Find Limits Of Sequences

Ex 16:  Find lim
𝑛→∞

1

𝑛2 + 𝑡𝑎𝑛−1(𝑛)



Increasing/Decreasing/Bounded Sequences

Def:  A sequence  𝑎𝑛  is decreasing if  𝑎𝑛+1 < 𝑎𝑛  for all  𝑛.

I.e.  𝑎1 > 𝑎2 > 𝑎3 > 𝑎4 > ⋯

I.e.  If you graph the sequence, each point in the graph is lower 

than the previous point in the graph.



Increasing/Decreasing/Bounded Sequences

Def:  A sequence  𝑎𝑛  is increasing if  𝑎𝑛+1 > 𝑎𝑛  for all  𝑛.

I.e.  𝑎1 < 𝑎2 < 𝑎3 < 𝑎4 < ⋯

I.e.  If you graph the sequence, each point in the graph is 

higher than the previous point in the graph.



Increasing/Decreasing/Bounded Sequences

Def:  A sequence  𝑎𝑛  is monotonic if it is either increasing or 

decreasing.  



Increasing/Decreasing/Bounded Sequences

Ex 17:  Show that the following sequences are decreasing…

a)  𝑎𝑛 =
3

𝑛+5
                        b)  𝑏𝑛 =

𝑛

𝑛2+1
  



Increasing/Decreasing/Bounded Sequences

Def:  A sequence  𝑎𝑛  is bounded above if there exists a 

number  𝑀  such that  𝑎𝑛 ≤ 𝑀  for all  𝑛.

I.e.  There is some horizontal line  𝑦 = 𝑀  such that if you 

graph the sequence, each point is below or on the horizontal 

line.



Increasing/Decreasing/Bounded Sequences

Def:  A sequence  𝑎𝑛  is bounded below if there exists a 

number  𝑚  such that  𝑎𝑛 ≥ 𝑚  for all  𝑛.

I.e.  There is some horizontal line  𝑦 = 𝑀  such that if you 

graph the sequence, each point is above or on the horizontal 

line.



Increasing/Decreasing/Bounded Sequences

Def:  A sequence  𝑎𝑛  is bounded if it is bounded below and 

bounded above.

I.e. there exists a numbers  𝑀  and  𝑚  such that  𝑚 ≤ 𝑎𝑛 ≤ 𝑀  

for all  𝑛.

I.e.  There are 2 horizontal lines  𝑦 = 𝑚  and  𝑦 = 𝑀  such 

that if you graph the sequence, each point is between (or on) 

the 2 horizontal lines.



Increasing/Decreasing/Bounded Sequences

Ex 18:  Which of the following sequences are bounded? If 

they are not bounded, are they bounded above or below?

a)  𝑎𝑛 = 𝑒𝑛                        b)  𝑏𝑛 = sin(𝑛)



Increasing/Decreasing/Bounded Sequences

Results:  

1) If a sequence is decreasing and bounded below, then it is 

convergent.

2) If a sequence is increasing and bounded above, then it is 

convergent.



Increasing/Decreasing/Bounded Sequences

Ex 19:  Show that the sequence defined by

𝑎1 = 1               𝑎𝑛+1 = 1 −
1

𝑎𝑛
    for   𝑛 ≥ 1

is increasing and  𝑎𝑛 < 3.  Deduce that the sequence  𝑎𝑛  is 

convergent and find its limit.

(Hint:  Use mathematical induction)



Arithmetic and Geometric Sequences

Def:  An arithmetic sequence is a sequence such that to get 

from any term to the next term, you keep adding the same 

number.  

Ex:   -4, 2, 8, 14, 20, 26, 32, …

Def:  An geometric sequence is a sequence such that to get 

from any term to the next term, you keep multiplying by the 

same number.  

Ex:   8, −4, 2, −1,
1

2
, −

1

4
,

1

8
, …
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