Section 11.1:
Sequences



What Is a Sequence?

Def:

Version 1
A sequence Is an infinite list of numbers with a definite order.

\ersion 2
A sequence is a function whose domain is the positive whole

numbers.




What Is a Sequence?

There are 3 ways to describe a sequence
1. With a list of the first few terms

Note: The list should be long enough so that the pattern is
obvious.

] 1 1 1 1 1
Ex1(again): 1, =, =, =, , ,
— ? 2 4 16 32
4 9 16 25
EX 2 — y N ) — ] B ] b
- 9 27 81 243




What Is a Sequence?

There are 3 ways to describe a sequence
2. With a closed form formula

Ex 3: Find the first 4 terms of each of the following sequences.
Then find the 29t term and graph the sequence.

— (_1yn_"_
) a = (—1)" -



What Is a Sequence?

There are 3 ways to describe a sequence
2. With a closed form formula

Ex 3: Find the first 4 terms of each of the following sequences.
Then find the 29t term and graph the sequence.

Vn—-2

n!

b) b, = oo n=2



What Is a Sequence?

There are 3 ways to describe a sequence
3. With a recursively definition

EX 4: Find the first 6 terms of the following sequence...

a) a; =5, a,=-2,and a,=a,_1a,_, —3a,,_4
for n> 2



Limits of Sequences

Def: If a,, Isasequence, then

lim a,, = L means...

n—0o

Version 1
If you go further and further to the right down the sequence

list (or down the graph), the numbers in the sequence settle
downto L.

\ersion 2
If you plug in bigger and bigger whole numbers in for n into

the formula for the sequence, the outputs settle down to the
number L.



Limits of Sequences

Def: If a,, i1sasequence and L Isa real number, then

lim a,, = L means...

n—0o

If such a real number exists, we say that the sequence a,, Isa
convergent sequence. Otherwise it Is a divergent sequence.




Limits of Sequences

Def (formal): If a,, Isasequence and L is a real number,
then

lim a,, = L means...

n—0o

For every € > 0, there exists a number N such that
L—e<a,<L+e€ forall n>N.

YA

s
. s
...........

Ol 1234 N n



Limits of Sequences

Def (formal): If a,, Isasequence and L is a real number,
then

lim a,, = L means...

n—0o

For every € > 0, there exists a number N such that
L—e<a,<L+e€ forall n>N.

Ex 5: Is the sequence
{1,0,1,0,0,1,0,0,0,1,0,0,0,0,1, ...}
a convergent or divergent sequence?



Results That Help You Find Limits Of Sequences

Some divergent sequences

Ex 6: FInd

a) lim (=1)" b) lim sin (n_n)

n—oo n—oo



Results That Help You Find Limits Of Sequences

3

Theorem Iflim,_.. f(x) = L and f(n) = a, when n is an integer, then

limnﬁoo an — L.

From Section 2.6, we had...

So...

If >0 ,then ]Jim — = (
x—oo xT
1 .
E lim — =0 if r>0
n—-° n




Results That Help You Find Limits Of Sequences

1
(4] lim—=0 if r>0

1—> 00 n

Ex 7: Find

a) i 1—o b) i 1—1' 1—o
noo nZ it | neeni/z



Results That Help You Find Limits Of Sequences

It lim top =# and lim bottom = +oo _ then

n—co n—Cco

. top
lim =0
n—-o pottom

Ex 8: Find

|
-
")
=
|
||
-

a) i ! m =
nl—r>¥>lo In(n) B n—oo 2N



Results That Help You Find Limits Of Sequences

Squeeze Theorem For Sequences
It a,. b, . and ¢, are three sequences where ...

l. a, <b, <c, eventually . and

2> lima,=limc¢, =L

n—oo n—00

Then ?111_1}30 b, =L

Ex 9: Find




Results That Help You Find Limits Of Sequences

@ Theorem If lim |a,| = 0, then lim a, = 0.

n—>C n—>o0

Ex 10: Find

a) lim (D" b) lim sin(n)

n—o0o n n—>0o n




Results That Help You Find Limits Of Sequences

Limit Laws for Sequences

If {a,} and {b,} are convergent sequences and c is a constant, then

lim (a, + b,) = lim a, + lim b,

n—o n—> 0 n—ow

lim (a, — b,) = lim a, — lim b,

n—> n— oo n—oo
Iim ca, = ¢ lim a,, Iim ¢ = ¢
n—oo n—> 0 n—> 0

lim (a,b,) = lim a, - lim b,

n—> 00 n—>0 n—>00

lim q,
lim — = —— if lim b, # 0
n—x b, lim b, n—> o0

lim a? = [lim an]" if p>0anda, >0

n—oo n—w




Results That Help You Find Limits Of Sequences
Ex11: Find

12n? .
—1 b) lim
+ tan (7’1) ) n— oo \/4712 + 1

a) 1
1R2; n? —-5n+1




Results That Help You Find Limits Of Sequences

(3] Theorem Iflim,_. f(x) = L and f(n) = a, when n is an integer, then
Iim,_.a, = L.

In conjunction with L’Hospital’s Rule




Sec. 4.4: Indeterminate Forms and L’Hospital’s Rule

L’Hospital’s Rule

Suppose you are taking the limit of a fraction

lim 2
x—a g(x).

If this limit Is of the type % or type , then

|+‘|+
8 18

N L CORN €O
x>ag(x)  x-ag'(x)




Sec. 4.4: Indeterminate Forms and L’Hospital’s Rule

Other Indeterminate Forms

0 100
— — 0-00 00 — CO
0 100

09 o 1%

Notes
1. If the limit is of any form other than 9 or f—oo use

oo

algebra to turn the limit into the form % or 2,

+oo

2. Algebra includes reciprocals, conjugates, and logs.



Results That Help You Find Limits Of Sequences

(3] Theorem Iflim,_. f(x) = L and f(n) = a, when n is an integer, then
Iim,_.a, = L.

In conjunction with L’Hospital’s Rule

Ex 12: Find

2 n

Q) lim —aV p) lim n?e”

n-o In(2n) n—eo




Results That Help You Find Limits Of Sequences

(

——

7| Theorem If lim a, = L and the function f 1s continuous at L, then

lim f(a,) = f(L)

n—>w

Ex 13: Find

a) lim sin(m/n) p) lim In(2n*+ 1) — In(n? + 1)

n—>0o



Results That Help You Find Limits Of Sequences

E The sequence {r"} is convergent if —1 < r < 1 and divergent for all other

values of r.
I . 0 if "1 <r<i1
m r" =
n—ow 1 lf ryr — 1
a,A a, A
r>1.
T, —1<r<0
L . . >
r=1 0 n
1+
{ *) >
0 n e 1 e
1 0<r<1 r<-1




Results That Help You Find Limits Of Sequences

E The sequence {r"} is convergent if —1 < » < 1 and divergent for all other
values of r.

. 0 if -1 <r<1
lim r" = _
n— o 1 if r=1

Also,
if r>1, then limr" = o0

n—00

if r<—1, then lim r™ = DNE

n—00

Ex 14: Find
1 n
a) lim 4" = oo b) lim (—) =0

n—oo n—-oo \ 3




Results That Help You Find Limits Of Sequences

9] The sequence {r"} is convergent if —1 < r <
values of r.

I and divergent for all other

if —1<r<li

lim " =1
1m =

Also,

If r> 1, then Tlti_r)glornzoo
if r<—1, then Aij)gor" = DNE
Ex 14: Find
1 n
c) lim (— —) =0 d) lim (—4)"= DNE
n—0co ) Nn—0o




Results That Help You Find Limits Of Sequences

@ The sequence {r"} is convergent if —1 < » < 1 and divergent for all other

values of r.
. L 0 if - 1<r<l1
T =1
Also,
if r>1, then limr" =00

n—0o

if r<—1, then lim r™ = DNE

n—00

Ex 14: Find

e) lim(—1)" = DNE f) lim(1)"=1

n—>00 n—>0o



Results That Help You Find Limits Of Sequences

@ The sequence {r"} is convergent if —1 < » < 1 and divergent for all other

values of r.
. . 0 if -1 <r<i
el 1 if r=1
Ex 15: Find
. _ 1
a) lim 57"8"+2 b) lim —

n—oo n-oco 2N



Limits of Sequences

Def (formal): If a,, Is asequence, then

lim a,, = 00 means...

n—00

Forevery M > 0, there exists anumber N such that
a, > M forall n > N.

|.e. no matter what horizontal line y = M you draw,
eventually each term of the sequence is above that horizontal
line.

Note: If lim a, = oo , the sequence Is divergent.

n—0o



Limits of Sequences

Def (formal): If a,, Is asequence, then

lim a,, = —c0 means...

n—0o

Forevery M < 0, there exists anumber N such that
a, <M forall n > N.

|.e. no matter what horizontal line y = M you draw,
eventually each term of the sequence is below that horizontal
line.

Note: If lim a,, = —oo, the sequence is divergent.

n—0o



Results That Help You Find Limits Of Sequences

Limit Laws for Sequences

If {a,} and {b,} are convergent sequences and c is a constant, then

lim (a, + b,) = lim a, + lim b,

n—o n—> 0 n—ow

lim (a, — b,) = lim a, — lim b,

n—> n— oo n—oo
Iim ca, = ¢ lim a,, Iim ¢ = ¢
n—oo n—> 0 n—> 0

lim (a,b,) = lim a, - lim b,

n—> 00 n—>0 n—>00

lim q,
lim — = —— if lim b, # 0
n—x b, lim b, n—> o0

lim a? = [lim an]" if p>0anda, >0

n—oo n—w




Results That Help You Find Limits Of Sequences

Note: The limit laws can still be used in the case when one or
more limits Is +oo as long as the resulting calculation is an

allowed calculation with infinities.

OK NOT OK
00 4+ 00 = 00 00 — 00 =7
© + # = © 000 =7

Other Indeterminate Forms

ol|lo
|+‘|+
818
o
8
8
|
8



Results That Help You Find Limits Of Sequences

Limit Laws for Sequences

If {a,} and {b,} are convergent sequences and c is a constant, then

lim (a, + b,) = lim a, + lim b,

n—o n—> 0 n—ow

lim (a, — b,) = lim a, — lim b,

n—> n— oo n—oo
Iim ca, = ¢ lim a,, Iim ¢ = ¢
n—oo n—> 0 n—> 0

lim (a,b,) = lim a, - lim b,

n—> 00 n—>0 n—>00

lim q,
lim — = —— if lim b, # 0
n—x b, lim b, n—> o0

lim a? = [lim an]" if p>0anda, >0

n—oo n—w




Results That Help You Find Limits Of Sequences

Ex 16: Find lim -
n-on? + tan~1(n)




Increasing/Decreasing/Bounded Sequences

Def. Asequence a,, IS decreasingif a,.; < a, forall n.

Ie a1 >a2 >a3 >a4>”'

l.e. If you graph the sequence, each point in the graph is lower
than the previous point in the graph.



Increasing/Decreasing/Bounded Sequences

Def. Asequence a,, Isincreasingif a,,.; > a, forall n.

Ie a1 <a2 <a3 <a4<”'

l.e. If you graph the sequence, each point in the graph is
higher than the previous point in the graph.



Increasing/Decreasing/Bounded Sequences

Def: Asequence a,, IS monotonic if it is either increasing or
decreasing.




Increasing/Decreasing/Bounded Sequences

Ex 17: Show that the following sequences are decreasing. ..

a) a, = —— b) b, =

n+5

n
n?+1




Increasing/Decreasing/Bounded Sequences

Def: Asequence a,, IS bounded above if there exists a
number M suchthat a,, < M forall n.

|.e. There is some horizontal line y = M such that if you
graph the sequence, each point is below or on the horizontal
line.



Increasing/Decreasing/Bounded Sequences

Def: Asequence a,, IS bounded below If there exists a
number m such that a,, = m forall n.

|.e. There is some horizontal line y = M such that if you
graph the sequence, each point is above or on the horizontal
line.



Increasing/Decreasing/Bounded Sequences

Def: Asequence a,, IS bounded if it is bounded below and
bounded above.

|.e. there exists anumbers M and m suchthat m <a,, <M
for all n.

l.e. There are 2 horizontal lines y =m and y = M such
that if you graph the sequence, each point is between (or on)
the 2 horizontal lines.



Increasing/Decreasing/Bounded Sequences

Ex 18: Which of the following sequences are bounded? If
they are not bounded, are they bounded above or below?

a) a, =e" b) b,, = sin(n)



Increasing/Decreasing/Bounded Sequences

r_‘I . -
12} Monotonic Sequence Theorem Every bounded, monotonic sequence is
convergent.

Results:

1) If a sequence is decreasing and bounded below, then it is
convergent.

2) If a sequence is increasing and bounded above, then it Is
convergent.




Increasing/Decreasing/Bounded Sequences

Ex 19: Show that the sequence defined by

1
a, =1 an+1=1—a— for n>1
n

IS Increasing and a,, < 3. Deduce that the sequence a,, IS
convergent and find its limit.

(Hint: Use mathematical induction)



Arithmetic and Geometric Sequences

Def: An arithmetic sequence Is a sequence such that to get
from any term to the next term, you keep adding the same
number.

Ex: -4,2,8, 14, 20, 26, 32, ...

Def: An geometric sequence is a sequence such that to get
from any term to the next term, you keep multiplying by the
same number.

i 8) _4'; 2; _1) %) N

, , [ ]

ol
ol
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